

NAPSR – PHMSA DIMP Implementation Team

National Association of Pipeline Safety Representatives
Office of Pipeline Safety

Chris McLaren PHMSA DIMP Coordinator

Welcome

Thank you for Your Participation at NEPSR's 2012 Pipeline Safety Seminar!

Today's Topics

- MFFR Requirements
- What the 2011 Data is showing us so far
- One year's worth of Data is not a Trend
- Review the 2012 Data to date

Mechanical Fitting Failure Reporting

- § 191.12 Distribution Systems: Mechanical Fitting Failure Reports. Each mechanical fitting failure, as required by § 192.1009, must be submitted on a MFFR Form PHMSA F-7100.1-2.
- Must submit for previous calendar year by March 15th
- May elect to submit its reports throughout the year
- Tools have been implemented for batch uploads
- Must also report this information to the State pipeline safety authority, if applicable.

Reporting and Data Analysis

- Communication of Performance Data through DIMP web page (<u>www.primis.phmsa.dot.gov/dimp</u>)
- The MFFR instructions will be revised in 2013.
- See Advisory Bulletin (ADB-2012-07) All hazardous leaks involving a fitting regardless of material; Apparent cause of Incorrect Operations; Electronic submission
- Failures resulting from a construction or installation defect should be identified with the "Incorrect Operations" leak cause and not the "Material or Welds/Fusions" leak cause category (as is described in PHMSA F 7100.1-2 and the Instructions).

General - 2011 MFF Reporting

- Total number of reports 8199
- Total number of Operators 191
- The state of origin includes 48 States and DC
- Total number of manufacturers 71
- Records missing manufacturer 51%

INSTRUCTIONS FOR COMPLETING FORM PHMSA F 7100.1-2

- Please make best effort at providing the best possible information
- Make an entry in each block for which data are available. Some companies may have very old pipe for which installation records do not exist. Estimate data based on reasonable knowledge, if necessary. Avoid entering "Unknown" if at all possible.

- Confirmation of information we thought we knew
 - The decade of installation (60's to 80's)
 - States with the most mileage have the most failures
- Majority of issues involve couplings
- Typical failure occurred Belowground, Outside, and in a Service-to-Service connection
- Plastic or combination fittings higher risk for cause of leak being incorrect operation or material/weld
- Steel fittings higher risk for equipment as cause

1203

State of Origin by Fitting Failure

Top 10 States	Top 10 Steel States	Top 10 Plastic States
TX – 13%	TX – 18%	PA – 26%
IL – 12%	IL – 18%	OH – 11%
PA – 9%	IN – 9%	CA – 10%
OH – 7%	NY – 6%	NY – 5%
IN – 7%	OH – 6%	GA – 4%
NY – 6%	MS – 5%	CT – 4%
MI – 5%	MI – 5%	MA – 4%
VA – 3%	TN – 4%	MO – 3%
CA – 3%	CA – 3%	SC – 3%
TN – 3%	VA – 3%	AZ – 3%

Decade Installed

Decade	Total	Percentage
Pre 1940s	35	2%
1940s	22	1%
1950s	176	10%
1960s	318	19%
1970s	468	28%
1980s	354	21%
1990s	154	9%
2000s	161	10%
2010s	5	Less then 1%

Other Areas of Analysis

- Comparison of First Pipe Material and Second Pipe Material
- Leak Location (above or below ground, inside or outside, service type) by Fitting Material
- Fitting Material by Leak Cause
- Fitting Joint Sizes
- State and Region specific data trends
- Manufacturing data trends
 - Manufacturer of Fitting by Year Manufactured
 - Manufacturer of Fitting by Years in Service

Data from 2012 (so far) and Trends

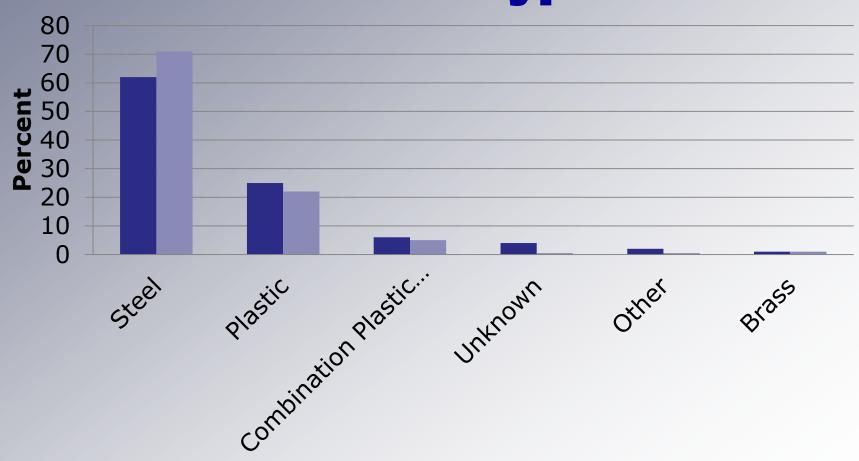
 Trend analysis is expected to require 3 years or more worth of data

General Overview of the MFFR Information

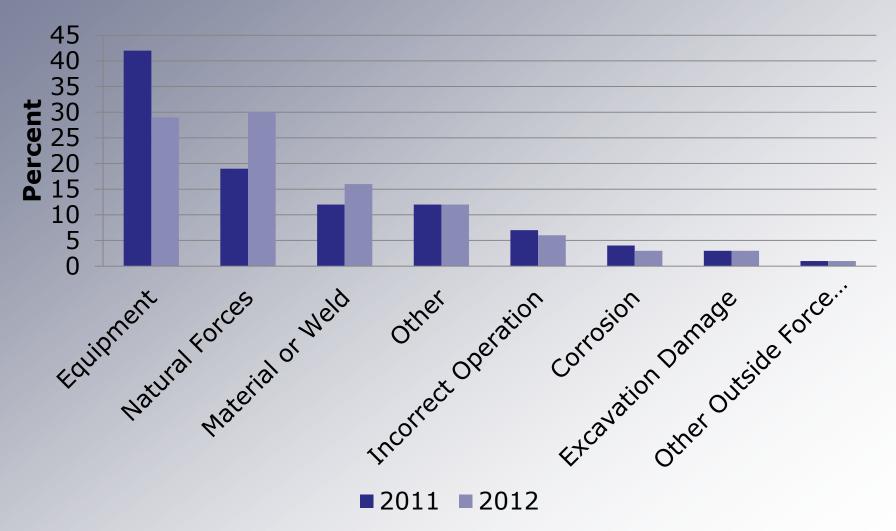
	2011	2012 (as of 9/15/12)
Number of Reports	8197	1233
Number of Reporting Operators	184	51
Number of states of origin	48 and DC	27
Number of Manufacturers	106	53-58
Percent of Missing Manufacturers	51%	49%

Decade of Installation of Mechanical Fitting that Failed

	2011 Count (%)	2012 Count (%)
Pre 1940s	35 (2%)	19 (4%)
1940s	22 (1%)	4 (1%)
1950s	176 (10%)	64 (12%)
1960s	318 (19%)	125 (24%)
1970s	468 (28%)	166 (32%)
1980s	354 (21%)	106 (20%)
1990s	154 (9%)	19 (4%)
2000s	161 (10%)	16 (3%)
2010s	5 (<1%)	1 (<1%)

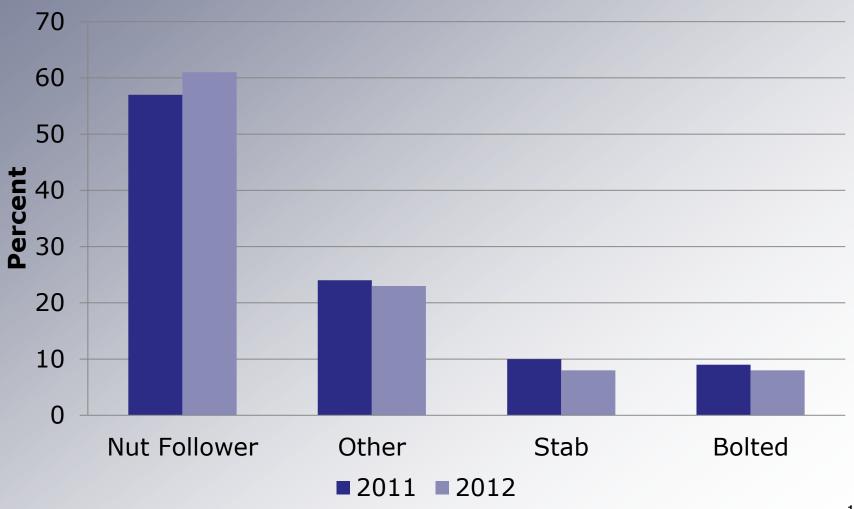

Average and Range Time to Failure by Material Type

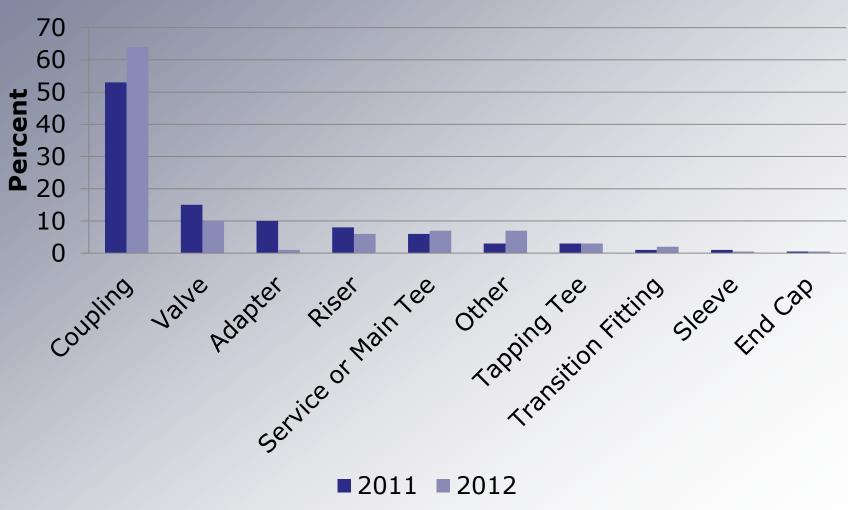
	2011	2012			
	From Year of Install	From Year of Install			
	Average (Range)	Average (Range)			
Steel	39 (0 - 124)	43 (3 - 112)			
Plastic	21 (-1 - 70)	19 (0 - 47)			
Combination	26 (0 - 76)	26 (1 - 38)			
Unknown	41 (0 - 71)				
Other	49 (0 - 111)	51 (26 - 73)			
Brass	41 (0 - 82)	57 (32 - 132)			


Based on 2011 data and other information, when the year of manufactured and the year of install are both reported, the majority of the dates are within a year of each other. Since, the dates are similar and year of install was reported more, year of install was used

Frequency of Failures by Fitting Material Type

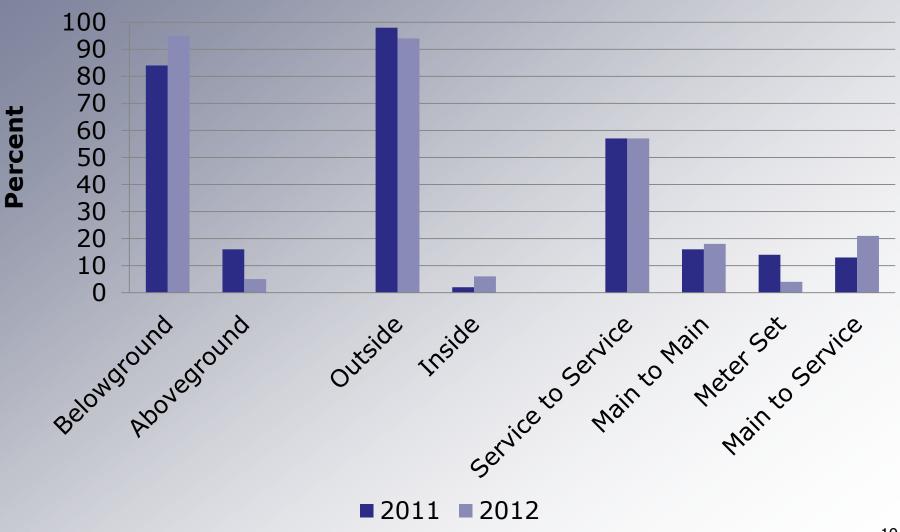
Chart of Leak Causes



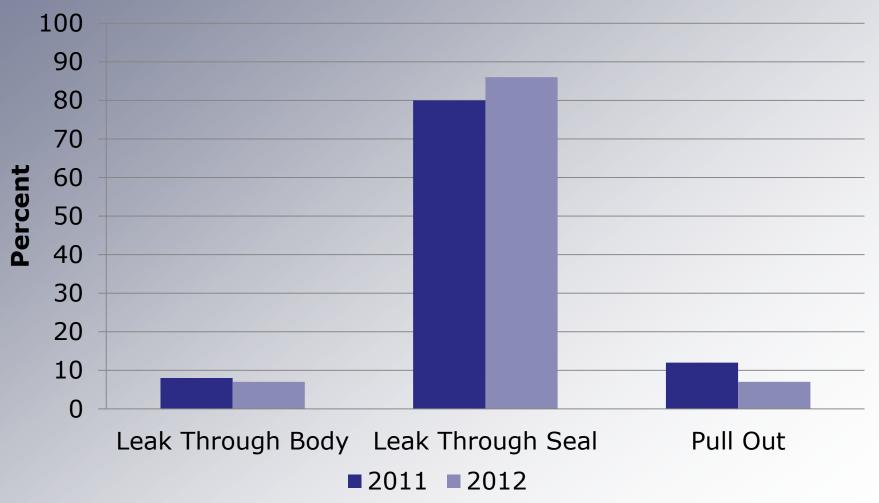

Leak Causes Expanded

Question	Responses	2011 Count (%)	2012 Count (%)
Leak Cause Natural Forces Thermal Expansion / Contraction?	No	736 (57%)	120 (42%)
	Yes	561 (43%)	168 (58%)
Leak Cause Material/Welds	Construction/Installation Defect	242 (24%)	41 (21%)
	Design Defect	171 (17%)	55 (27%)
	Material Defect	613 (60%)	104 (52%)
Leak Cause Exc Damage Occurred	At time of leak discovery	166 (75%)	27 (84%)
	Previous to leak discovery	54 (25%)	5 (16%)

General Mechanical Fitting Type

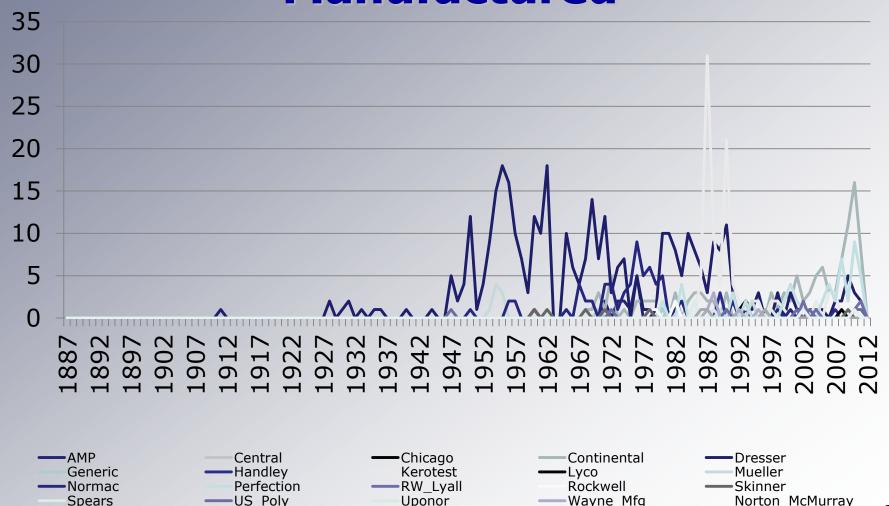


Specific Type of Fitting

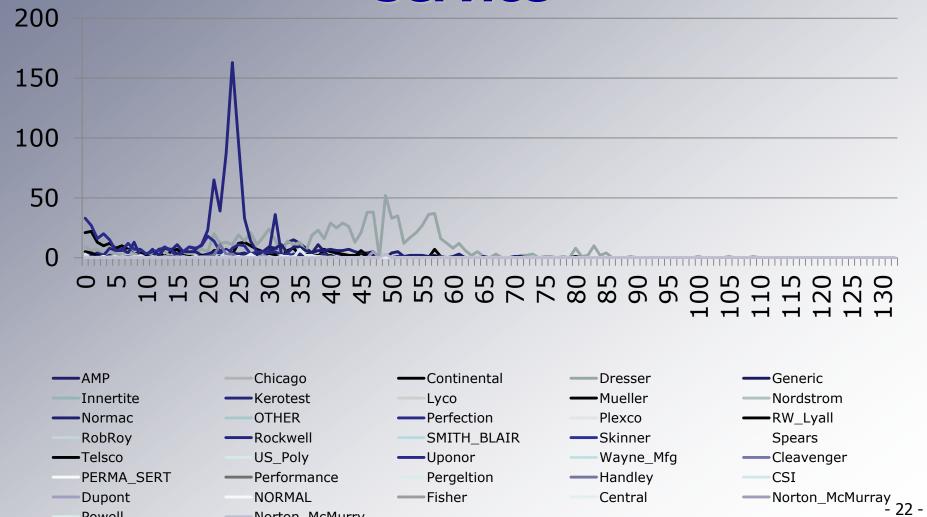


Leak Location

Leak Occurrence



Conino


Cleavenger

Manufacturer of Fitting by Year of Manufactured

Powell

Manufacturer of Fitting by Years in Service

Norton_McMurry

Manufacturer of Fitting by Year of Failure

Top 10 States Reporting, Top 10 Steel States, and Top 10 Plastic States

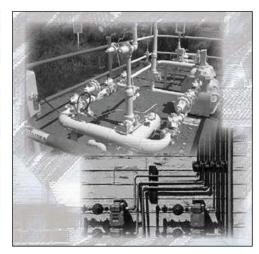
States, and Top 10 Plastic States								
Top 10 States		Top 10 Steel States		Top 10 Plastic States				
Number of Services Annual Report 2011	2011	2012	Number of Steel Services Annual Report 2011	2011	2012	Number of Plastic Services Annual Report 2011	2011	2012
CA – 17%	TX – 10%	TX – 15%	CA – 13%	TX - 18%	TX – 49%	CA – 12%	PA – 26%	PA – 40%
TS – 10%	IL – 9%	IN - 7%	TX - 7%	IL – 18%	IN – 22%	TX - 7%	OH – 11%	SC – 19%
IL – 5%	PA – 7%	PA – 4%	IL – 6%	IN - 9%	IL – 8%	NY - 5%	CA – 10%	TX – 8%
NY - 5%	OH – 6%	IL – 2%	OH – 5%	NY – 6%	MO – 4%	OH – 5%	NY - 5%	OH – 8%
MI – 4%	IN - 5%	SC – 2%	NY - 5%	OH – 6%	OH – 3%	MI – 5%	GA – 4%	IN - 5%
OH – 4%	NY - 5%	OH – 2%	MI – 5%	MI – 5%	MI – 2%	IL – 5%	CT – 4%	WA – 5%
NJ – 4%	MI – 4%	MO – 2%	PA – 4%	MS – 5%	SC – 2%	PA – 5%	MA – 4%	AL – 4%
PA – 4%	MS – 3%	MI – 1%	NJ – 3%	TN – 4%	HI – 2%	GA – 3%	MO – 3%	MI – 4%
LA – 3%	CA – 2%	WA – 1%	GA – 3%	CO – 3%	PA – 1%	NJ – 3%	SC – 3%	OR – 2%
CO – 3%	VA – 2%	AL – 0.5%	IN – 3%	VA – 3%	WA – 1%	IN – 3%	AZ – 3%	KY - 1%

DIMP Home Live Demo, as time allows

of Transportation

DIMP History

DIMP Resources


Questions and Comments for O

Distribution Integrity Management

The Pipeline and Hazardous Materials Safety Administration (PHMSA) published the final rule establishing integrity management requirements for gas distribution pipeline systems on December 4, 2009 (74 FR 63906). The effective date of the rule is February 12, 2010. Operators are given until August 2, 2011 to write and implement their program.

PHMSA previously implemented integrity management regulations for hazardous liquid and gas transmission pipelines. These regulations aim to assure pipeline integrity and improve the already admirable safety record for the transportation of energy products. Congress and other stakeholders expressed interest in understanding the nature of similarly focused requirements for gas distribution pipelines. Significant differences in system design and local conditions affecting distribution pipeline safety preclude applying the same tools and management practices as were used for transmission pipeline systems. Therefore, PHMSA took a slightly different approach for distribution integrity management, following a joint effort involving PHMSA, the gas distribution industry, representatives of the public, and the National Association of Pipeline Safety Representatives to explore potential approaches.

The regulation requires operators, such as natural gas distribution companies to develop, write, and implement a distribution integrity management program with the following elements:

- Knowledge
- · Identify Threats
- · Evaluate and Rank Risks
- · Identify and Implement Measures to Address Risks
- · Measure Performance, Monitor Results, and Evaluate Effectiveness
- Periodically Evaluate and Improve Program
- · Report Results

The DIMP Inspection Forms as well as other resources to support operators implement their program are on the DIMP Resources page and through PHMSA's Pipeline Safety website.

PHMSA has developed and continues to enhance guidance to help the public and the affected industry understand the requirements of the final rule in the form of FAQs.

DOT Website | PHMSA Website | Privacy Policy

Please regularly use PHMSA websites as they are a primary form of communication

PHMSA Office of Pipeline safety

http://phmsa.dot.gov/pipeline

DIMP Home Page

http://primis.phmsa.dot.gov/dimp/index.htm

Pipeline Safety Stakeholder Communications

http://primis.phmsa.dot.gov/comm/

Thank you for Your Participation

Questions and Answers