

#### Regulatory Next Steps in Addressing Pipeline Seam Weld Challenges

#### 2014 KCC Kansas Pipeline Safety Seminar October 28th & 29th







### Regulatory Next Steps in Addressing Pipeline Seam Weld Challenges

- Introduction and History
- Regulatory Mandate and Recommendations
- Seam Study Phase 1
- Seam Study Phase 2
- Integrity Verification Process Overview
- Regulatory Action Status Update

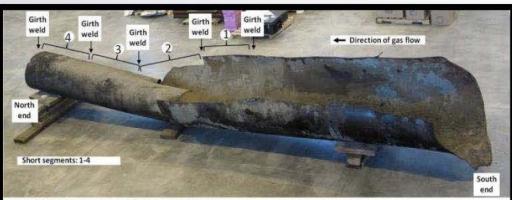


### **Introduction and History**

- U.S. PHMSA Advisory Bulletins on ERW Seam Failures
  - Alert Notice ALN-88-01 and ALN-89-01
  - Advised operators and the public on factors contributing to operational failures of pipelines constructed prior to 1970 with Electric Resistance Weld (ERW) seams

Incident #1 -Carmichael, MS

- Liquid Propane Pipeline Rupture Carmichael, MS
  - November 1, 2007
  - Fracture along LF-ERW seam
  - 2 fatalities and 7 injuries






### **Introduction and History**

- Natural Gas Transmission Rupture San Bruno, CA
  - September 9, 2010
  - Failure of 30-inch diameter weld seams
  - Fracture along partial welded seam 6 short pipe joints
  - 5 pups fabricated in 1956, did not meet pipe quality standards
  - 8 fatalities, many injured, 38 homes destroyed, 70 homes damaged

Incident #2 San Bruno, CA



hotograph of the 28-foot-long ruptured section of pipeline



#### U.S. Regulatory Mandate and Recommendations: *Pipeline Safety Act of 2011*

- Pipeline Safety Act of 2011 Section 23
- Verification of Records and Reporting
  - Identify pipe segments with no records to verify Maximum Allowable Operating Pressure (MAOP) for all Gas Transmission steel pipe [Class 3, 4 and all High Consequence Areas (HCAs)]

#### Determination of MAOP

Reconfirm MAOP for pipeline segments with insufficient records

#### Testing Regulations

 Requires conducting tests to confirm material strength of previously untested gas transmission steel pipelines in HCAs and operating pressure of +30% Specified Minimum Yield Strength (SMYS) that were not previously pressure tested 5



#### U. S. Regulatory Mandate and Recommendations: *NTSB Recommendations*

- NTSB P-09-01 "Comprehensive Study" to identify actions that can be implemented to eliminate catastrophic longitudinal seam failures in ERW pipe
- NTSB P-09-02 "Implement Actions from Study Findings"
- NTSB P-11-14 "Delete Grandfather Clause" recommends all grandfathered pipe be pressured tested, including a "spike" test
- NTSB P-11-15 "Seam Stability" recommends pressure test to 1.25 x MAOP before treating latent manufacturing and construction defects as "stable"
- NTSB P-11-17 "Piggable Lines" Configure all lines to accommodate smart pigs, with priority given to older lines



### U. S. Regulatory Mandate and Recommendations

 How much pipeline mileage will these mandates and recommendations effect?



### **Piggability: ILI Able vs Not Able**

| Part R        | <b>Total Miles</b> | ILI Able | ILI Not Able |
|---------------|--------------------|----------|--------------|
| Class 1 - HCA | 1,658              | 1,380    | 278          |
| - non-HCA     | 234,851            | 146,035  | 88,816       |
| Class 2 - HCA | 1,409              | 1,152    | 257          |
| - non-HCA     | 28,978             | 15,073   | 13,905       |
| Class 3- HCA  | 15,850             | 10,469   | 5,381        |
| - non-HCA     | 16,751             | 6,924    | 9,827        |
| Class 4 - HCA | 752                | 366      | 386          |
| - non-HCA     | 209                | 112      | 97           |
| TOTAL         | 300,458            | 181,511  | 118,947      |

Gas Transmission 2012 Annual Report data as of 7-1-2013

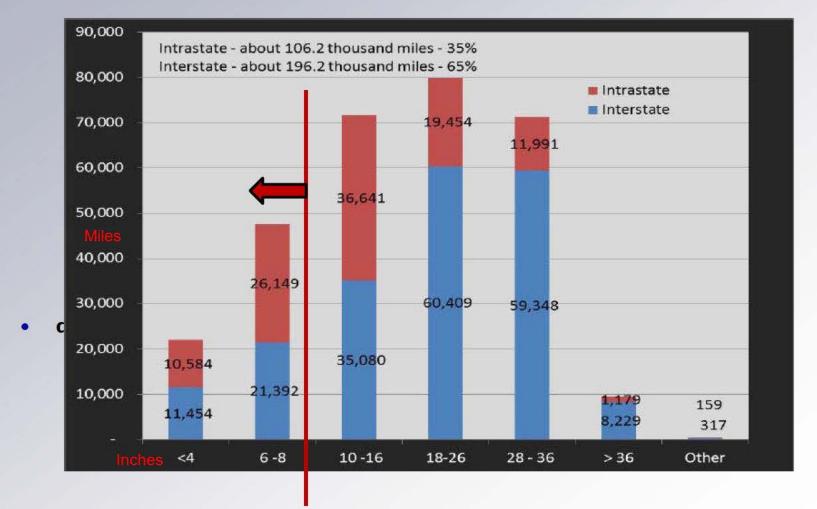


### Summary of Gas Transmission (GT) Pipe

| Location | Total GT<br>Miles | % in HCA | GT HCA<br>Miles | Non-HCA<br>Miles |
|----------|-------------------|----------|-----------------|------------------|
| Class 1  | 237,756           | 0.7      | 1,660           | 236,096          |
| Class 2  | 30,210            | 4.7      | 1,412           | 28,798           |
| Class 3  | 32,613            | 48.6     | 15,854          | 16,759           |
| Class 4  | 962               | 78.2     | 752             | 209              |
| Total    | 301,540           |          | 19,678          | 281,862          |

Data as of 7-1-2013 from Part Q of Operator Annual Reports




### Aging Infrastructure: % by Decade in USA

| Decade             | Hazardous<br>Liquid | Gas<br>Transmission | Gas Disti<br>Main | ribution<br>Service |
|--------------------|---------------------|---------------------|-------------------|---------------------|
| Unknown &<br><1920 | 2%                  | - >                 |                   |                     |
| 1920s              | 2%                  | 2%                  |                   |                     |
| 1930s              | 3% ~                | 4% &                | 6%                | 3%                  |
| 1940s              | 3%<br>8% %          | 4%<br>7% 89         | 2%                | 2%                  |
| 1950s              | 20%                 | 22%                 | 10% 44            | - <mark>8% %</mark> |
| 1960s              | 21%                 | 23%                 | 17%               | 13%                 |
| 1970s              | 16%                 | 11%                 | 12%               | 14%                 |
| 1980s              | 9% %                | 10% %               | 14%               | 17%                 |
| 1990s              | 9% %<br>11% %       | 10% %               | 21%               | -22% 80             |
| 2000s              | 8%                  | 10%                 | 18%               | 21%                 |



#### **Nominal Pipe Size**

I LI B





#### **Pressure Test Range**

| Pressure Test Range                 | Total Miles | % Total |
|-------------------------------------|-------------|---------|
| PT < 1.1 MAOP or no PT              | 93,817      | 31%     |
| <b>1.25 MAOP &gt; PT ≥ 1.1 MAOP</b> | 19,131      | 6%      |
| PT ≥ 1.25 MAOP                      | 187,628     | 62%     |

Gas Transmission 2012 Operator Annual Report data as-of 7-1-2013



#### Seam Study Comprehensive Study to Understand Longitudinal ERW Seam Failures

#### Research Contractor: Phase 1

Battelle

#### Subcontractors: Phase 1

- Det Norske Veritas (DNV) & Kiefner and Associates (KAI)
- Principle Investigators: Phase 1
  - Bruce Young Battelle
  - Brian Leis & Bruce Nestleroth, in conjunction with
  - John Kiefner (KAI) & John Beavers (DNV)
  - Phase 1 Completed Jan. 2014; Phase 2 underway



### Phase 1 – Findings

#### ILI Detection & Sizing:

- ILI results show inconsistencies with digs & hydro test results
  - May be due to either ILI tool findings or interpretation
- ILI tools are useful for finding & eliminating some seam defects

#### In-the-Ditch Assessment Methods

- No consistent standard practice
- Can be inspector dependent
- In-the-Ditch / ILI Improvements required for:
  - More specific identification of anomaly type
  - Reduction of false calls
  - Improved sizing of defect depth and length for effective assessment and evaluation results



### Phase 1 – Findings

#### • Failure Pressure Models

- Should use a more representative Charpy impact toughness position relative to the bond line
- Toughness values when unknown, need to be conservative

#### • Predictive Model for Assessing Failure Stress Levels

- Must be based upon whether the failure is brittle or ductile, if unknown evaluate for both
- Must use lower-bound failure stress levels based upon defect type (cold weld, hook cracks, stress corrosion cracking, etc.)



### Phase 1 – Findings

#### Hydrostatic test pressures

- Need to be higher to be effective based upon a review of over 600 seam failures
- Time to failure increases at an exponential rate to increased test pressure
- Higher test pressures should mean longer interval before a retest



### **Phase 2 – Overview**

- 1. Improve hydrotesting protocols for ERW/FW Seams
- 2. Enhance Defect Detection and Sizing via Inspection
- 3. Defect Characterization: Types, Sizes, & Shapes
- 4. Develop & Refine Predictive Models & Quantify Growth Mechanisms
- 5. Develop Management Tools
- 6. Public Meeting/Forum

Completed reports for Phase 1 available at: <u>https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=390</u>



### **Integrity Verification Process (IVP)**

### **Overview of Basic Principles**



### Principle #1 Apply to Higher Risk Locations

High Consequence Areas (HCAs)

#### Moderate Consequence Area (MCA):

- Onshore area within a potential impact circle
- Containing one or more buildings intended for human occupancy
- Occupied site or designated Federal interstate, expressway, or 4-lane highway right-of-way
- Does not meet definition of high consequence area, as defined in § 192.903.
- PHMSA Estimates
  - ~ 76,000 miles HCA/MCA (out of ~ 301,000 miles)



### Principle #2 Screen for Categories of Concern

#### Apply process to pipeline segments with:

- Grandfathered Pipe
- Lack of Records to Substantiate MAOP
- Lack of Adequate Pressure Test
- Operating pressures over 72% SMYS (pre-Code)
- History of Failures Attributable to Manufacturing & Construction Defects



### Principle #3 Know & Document Pipe Material

- Inadequate Validated, Non-traceable Material Documentation, Establish Material Properties by an approved process:
  - Cut out and Test Pipe Samples (Code approved process)
  - In Situ Non-Destructive Testing (if validated and if Code approved)
  - Field verification of code stamp for components such as valves, flanges, and fabrications
  - Other verifications

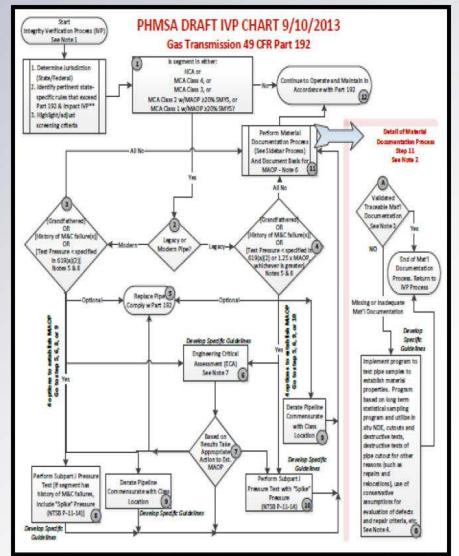


### Principle #4 Assessments to Establish MAOP

- Allow Operator to Select Best Option to Establish MAOP
- Candidate IVP Options for Establishing MAOP
  - Subpart J Pressure Test with Spike Test
  - Derate Operating Pressure
  - Engineering Critical Assessment
  - Replace Pipe Segment
  - Alternative Technology or Technical Options
  - o Other options PHMSA should consider?



#### **Integrity Verification Process (IVP) Chart**


- Applicable Segments
  - (Steps 1, 2, 3 and 4)

#### MAOP Determination Methods (Steps 5 – 10)

- Pressure Test
- Pressure Reduction
- Engineering Critical Assessment (ECA)
- Pipe Replacement
- Pressure Reduction for Segments w/Small PIR
- Alternative Technology

#### Materials Documentation (11)

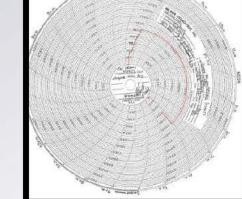
- Destructive
- Non-destructive
- Continue Operations (12)

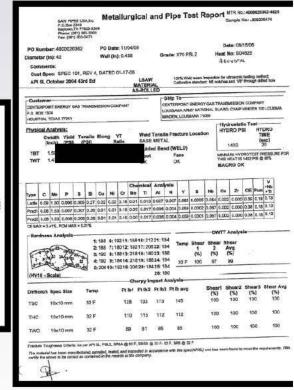


http://primis.phmsa.dot.gov/meetings/MtgHome.mtg?mtg=91



# Why are pipeline material records needed?


- To establish design and MAOP
- For integrity management (IM)


IM, Surveys, Patrols, Manuals,

- Anomaly evaluations for safe operating pressure
- Record Types:
  - Materials
  - Design
  - Construction
  - Pressure Testing
  - Corrosion Control

Procedures

o 0 & M -







### **Material Documentation Plan**

#### Procedures

- Tests for:
  - Yield strength, ultimate tensile strength, seam type, coating type and chemistry
- Destructive Tests
  - Pipe removed from replacements and relocations
- Destructive and/or Non-Destructive Tests
  - Direct examinations, repairs, remediation & maintenance
- Tests used only to verify and document material grade



### **MAOP Determination**

#### Applicable Locations

- Located in HCA, MCA, and meets any of the following:
  - Experienced reportable in-service incident since last pressure test due...
  - Legacy pipe or constructed with legacy construction techniques and has not had a Pressure Test (PT) of the greater of
    - 1.25 times MAOP or applicable Class location PT requirement
  - No PT records
  - MAOP established per Grandfather Clause



### **MAOP Determination**

#### Pressure Test

- 1.25 or class location test factor times MAOP
- Spike test segments w/ reportable in-service incident due to legacy pipe/construction and cracking
- Estimate remaining life, segments w/crack defects

#### Pressure Reduction

- Reduce pressure by MAOP divided by class location test factor
- Estimate remaining life, segments w/crack defects
- Pipe Replacement
  - Install new pipe that meets Code requirements



### **MAOP Determination**

#### Engineering Critical Assessment (ECA)

- ECA analysis for MAOP
  - Segment specific technical and material documentation issues
  - Analyze crack, metal loss, and interacting defects remaining in pipe, or could remain in the pipe, to determine MAOP
  - MAOP established

#### Alternative Technology

 Alternative technical evaluation process that provides a sound engineering basis for establishing MAOP

### **Regulatory Action – Status Update**

#### Notice of Proposed Rulemaking (NPRM)

- Regulation drafted
- Being routed for approval to notice to Public

#### • Applicable to Gas Transmission Pipelines

- 49 Code of Federal Regulations Part 192



#### **Regulatory Next Steps in Addressing Pipeline Seam Weld Challenges**

## **Stay Tuned**





30