#### 2015 Kansas Pipeline Safety Seminar

Odorization Program and Odorizer Updates Regulator Station Updates

Security

C. Lindsay Enloe, P.E. Tyler E. Enloe, P.E.

Safety





#### **Odorization Program and Odorizer Updates**



Safety

Security

Partnership

Performance



## Product Representation Disclosure

- USDI DOES NOT represent any manufacturer of odorizers or odorant detection instruments.
- USDI DOES represent Chevron Phillips and is the exclusive microbulk delivery partner for Chevron Phillips Natural Gas Odorants in the Midwest.

### OBJECTIVES

- Why Odorize?
- Do I have to Odorize?
- What does Part 192 say about Odorization?
- What type of Odorizer do I need?
- What type of Odorant do I use?
- How do I know I have an effective odorization program?
- Troubleshooting Odorizer issues.
- Filling Odorizers.

#### Simply so People Can Detect a Leak



#### Do I Have to Odorize?

- You DO IF:
- You are an LDC or Master Meter Operator
- You operate a Transmission Pipeline in a Class 3 or Class 4 Area.
- Your health, safety, legal or insurance coverage provider tells you to.
- Exemptions
  - Transmission Operators in Class 1 or 2
  - Some additional specific exemptions

#### Part 192.625

- 192.625 (a) Odorize to 1/5 of the LEL, detectible by a person with a "normal" sense of smell.
- 192.625(b) makes up about half of the section and VERY specifically describes EXACTLY who must odorize and who doesn't have to.

#### 192.625

# • 192.625 (c) and (d) describe the properties odorants must possess.

#### 192.625

 192.625 (e) "Equipment for odorization must introduce the odorant without wide variations in the level of odorant."

#### 192.625

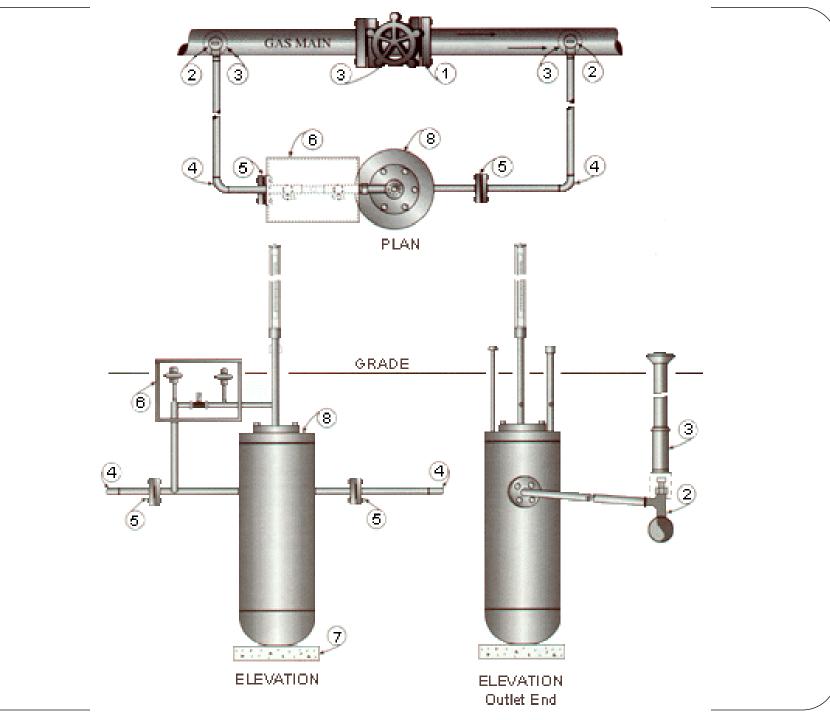
• 192.625 (f) Periodic sampling of the gas using an instrument capable of determining the percent gas in air at which the odor becomes readily detectable.







# Subpart P, Distribution Integrity Management


- Is a poorly performing odorizer a threat to your system?
- My answer would be a resounding YES.
- Not really, at least according to Subpart P.
- Will dollars for odorization improvements, upgrades etc. suffer as gas companies are forced to address the threats identified through their Integrity Management Programs?

#### Odorizers

- Home Made
- Simple Wick (Farm Tap Odorizer)
- Bypass (King Tool and Peerless)
- Pulse Bypass
- Pump Injection















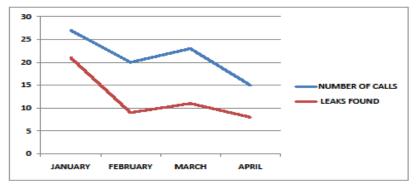
#### **Odorizer Lifecycle**

- Bypass 1 year to 50 years
- Injection Average 20 years
- Example Injection Odorizer Cost/Year
- New Odorizer \$30,000.00
- \$30,000/20 = \$1,500.00
- Maintenance = \$1,500 every two years
- Total Cost per year = \$2,250.00 plus odorant
- Has to be done, has to be done well, cost of doing business

#### Odorants

- Odorant Components are Usually Blended to Achieve Desirable Traits.
- Typical Odorant Blends Used in Gas Utilities are 75-80% TBM and 20-25% DMS
- Know what Kind you are Using
- Take Care in Changing Blends, Odorants are NOT "All the Same"

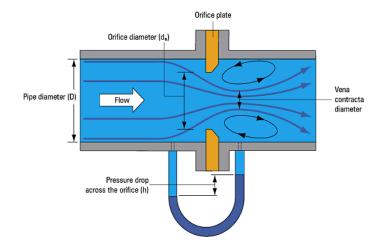
- Calculating an Odorant Injection Rate
- Determine Odorant Use in lbs (App. 6.8 Lbs/Gallon)
- Obtain gas use for the Same Period in MMCF
- Divide the Odorant Used by the MMCF to Obtain a Rate
- There is no Required Minimum or Maximum. This Number will Vary from System to System.


# • Performing Sniff Tests Using an Instrument

- Odorometer, DTEX, Odorator
- Use a Properly Calibrated Instrument, Replace Hoses
- Vary the Locations
- System Extremities
- Normal Sense of Smell
- More than One Person
- Limit the Number of Tests in a Given period
- Documentation

#### • Tracking and Trending Customer Leak Calls

#### ILLINOIS GAS COMPANY CUSTOMER LEAK/ODOR COMPLAINT 2011


| MONTH     | NUMBER OF CALLS | LEAKS FOUND |
|-----------|-----------------|-------------|
| JANUARY   | 27              | 21          |
| FEBRUARY  | 20              | 9           |
| MARCH     | 23              | 11          |
| APRIL     | 15              | 8           |
| MAY       |                 |             |
| JUNE      |                 |             |
| JULY      |                 |             |
| AUGUST    |                 |             |
| SEPTEMBER |                 |             |
| OCTOBER   |                 |             |
| NOVEMBER  |                 |             |
| DECEMBER  |                 |             |



- Look at Data from all Sources
- Maintain your Odorizers
- Replace Odorizers that are not Getting the Job Done with the Right Odorizer for the Application
- Maintain your Sniff Testing Instruments
- Know what Odorant Blend you are Using and Why
- Make Sure Your Records are Accurate and Meaningful

# Common Issues With Bypass Odorizers

- Is the differential pressure in the acceptable range?
  - 30 in. W.C. to 80 in. W.C.



- Odorant tank almost empty
- Odorant tank too full
- Gauge or Float stuck or not operating correctly

#### **Troubleshooting Odorizers**

• "These odorizers are highly efficient and economical, as they have no moving parts and present almost no mechanical problems."

- KingTool Company

• Although the bypass odorizer has no mechanical parts there are many more issues that can cause problems with odorization of the system.

- Methods of Delivery
  - Bulk delivery
  - Drums
  - DOT Cylinders
  - Cans

- Bulk Delivery
  - Closed Loop System
  - Cheapest, Safest
  - No disposal of cans or drums
- Small Trailer up to 80 gallons
- Large Trailer- up to gallons
- Tanker up to gallons



- Drums
  - More expensive than bulk delivery
  - Issues with disposal



- DOT Cylinders
  - More expensive due to low volume and high cost of shipping
  - Better for low volume usage

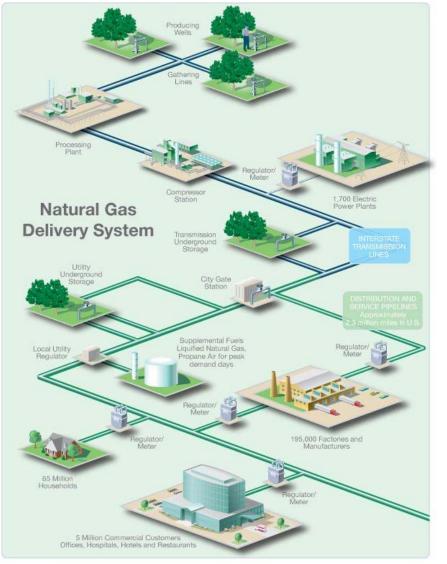


- Cans
  - Extremely expensive
  - Hard to dispose of

#### **Regulator Station Updates**



Safety


Security

Partnership

Performance

#### Natural Gas Delivery System

- Regulator Locations
  - Transmission Pipeline Regulators
  - Town Border Stations
  - District Regulator Stations
  - Industrial and Commercial Meter Sets
  - Residential Meter Sets



#### **Transmission Regulator Stations**

- Protecting your system from overpressurization
- Inlet pressures as high at 900 psig.
- Regulator Station or Relief Valve can be used.



#### **Town Border Stations**

Main pressure reduction from high pressure to town distribution system.



## **District Regulator Station**

• Serving subdivisions, industrial parks, etc.



## District Regulator Station (Farm Taps)

• Farm Taps serving more than two customers must be inspected annually at same standards as town border station.





### • Regulator and Relief





### • Dual Run Regulators and Relief



- Multistage pressure reduction and Relief
- Cut from 800 psig to 200 psig
- 200 psig to 100 psig
- 100 psig to 20 psig
- Relief Valve Set at 35 psig



#### • Worker Monitor with or without Relief



## Making Inspections Easy

- Need to be able to perform lock up on each regulator at station.
  - Control lines inside upstream block valves.
  - Ports for gauges inside upstream block valves.



## Making Inspections Easy

- Relief Valve Inspection
  - Pup between Relief Valve and Block Valve with port to introduce gas to test relief valve pressure setting.
  - Can easily install a TEE to attach gauge and connect nitrogen bottle to test relief valve.



## **Overpressure Protection**

- ReliefValve
  - Relieves pressure off of system when pressure exceeds set point.
    - Warning Relief Valve vs. Full Capacity Relief Valve
- Monitor Regulator
  - Regulates the pressure downstream when the pressure exceeds it's set point.

### **Underpressure Protection**

- Dual Run Stations
  - Having a second regulated run at the station protects against loss of pressure if working regulated fails closed.
- Monitor Regulator
  - Passes gas downstream when the pressure drops below it's set point.

## **Station Bypasses**

- Could have a high pressure differential across valve.
- Regulated Bypasses allow for a second layer of underpressure protection without the issues of an unregulated bypass.



### Station Requirements

- 100 MCFH or 100,000 CFH
- 30 psig outlet
- 200 psig inlet
- Inlet MAOP of 250 psig
- Outlet MAOP of 40 psig

Table 5. Orifice Sizes and Flow and Sizing Coefficients

#### FLOW COEFFICIENTS AND CONSTANTS

| 2" x                | Swage<br>Factor |    |     |       |      |
|---------------------|-----------------|----|-----|-------|------|
| Percent<br>Capacity | Cv              | C1 | Cg  | 1.5:1 | 2:1  |
| 100%                | 13.4            | 37 | 500 | 0.96  | 0.93 |
| <b>75</b> %         | 10.7            | 30 | 320 | 0.97  | 0.95 |
| <b>50</b> %         | 9.1             | 27 | 245 | 0.98  | 0.96 |
| 35%                 | 5.5             | 26 | 144 | 1.00  | 0.99 |

**NOTE:** Allow a 5% factor of safety when calculating relief capacity

|                                                                          | ORIFI                               | CE SIZE                        | FOR RELIEF SIZING |                   |                | ~              | IEC SIZING COEFFICIENTS |      |      |  |
|--------------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------------|-------------------|----------------|----------------|-------------------------|------|------|--|
| TRIM CONSTRUCTION                                                        | INCHES                              | mm                             | WIDE-OPEN Cg      | REGULATING Cg     | C <sub>1</sub> | K <sub>m</sub> | X <sub>T</sub>          | FD   | FL   |  |
| Restricted capacity trim,<br>Straight bore —<br>Elastomer disk seat only | 1/2 <sup>(1)</sup><br>3/4           | 13 <sup>(1)</sup><br>19        | 200<br>425        | 155<br>330        |                |                | 0.78                    | 0.50 | 0.89 |  |
| Restricted capacity trim,<br>Stepped bore —<br>Elastomer disk seat only  | 7/8 x 3/8<br>7/8 x 1/2<br>7/8 x 5/8 | 22 x 9.5<br>22 x 13<br>22 x 16 | 115<br>200<br>300 | 110<br>190<br>280 | 35             | 0.79           |                         |      |      |  |
| Full capacity trim,<br>Elastomer disk,<br>or O-ring seats                | 7/8<br>1-1/8                        | 22<br>29                       | 550<br>850        | 408<br>680        |                |                |                         |      |      |  |

• Calculating Capacity of Regulator using Cg

Capacity = (inlet pressure + 14.7 psi) \* Cg \* 1.29 Capacity = 214.7 \* 500 \* 1.29 = 138,481.5 CFH = 138.4 MCFH If a worker monitor set up, Capacity = 138.4 \* 0.80 = 110.72 MCFH FLOW COEFFICIENTS AND CONSTANTS 2" x 1" Single Port Value Sw

| Table 5. | . Orifice Sizes and Flow and Sizing Coefficients |  |
|----------|--------------------------------------------------|--|
|----------|--------------------------------------------------|--|

| TRIM CONSTRUCTION                                                        | ORIF                                |                                | FOR RELIEF SIZING |                           |  |
|--------------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------------|---------------------------|--|
|                                                                          | INCHES                              | mm                             | WIDE-OPEN Cg      | REGULATING C <sub>g</sub> |  |
| Restricted capacity trim,<br>Straight bore —<br>Elastomer disk seat only | 1/2 <sup>(1)</sup><br>3/4           | 13 <sup>(1)</sup><br>19        | 200<br>425        | 155<br>330                |  |
| Restricted capacity trim,<br>Stepped bore —<br>Elastomer disk seat only  | 7/8 x 3/8<br>7/8 x 1/2<br>7/8 x 5/8 | 22 x 9.5<br>22 x 13<br>22 x 16 | 115<br>200<br>300 | 110<br>190<br>280         |  |
| Full capacity trim,<br>Elastomer disk,<br>or O-ring seats                | 7/8<br>1-1/8                        | 22<br>29                       | 550<br>850        | 408<br>680                |  |

| 2" x                | Swage<br>Factor |    |     |       |      |
|---------------------|-----------------|----|-----|-------|------|
| Percent<br>Capacity | Cv              | C1 | Cg  | 1.5:1 | 2:1  |
| 100%                | 13.4            | 37 | 500 | 0.96  | 0.93 |
| 75%                 | 10.7            | 30 | 320 | 0.97  | 0.95 |
| <b>50%</b>          | 9.1             | 27 | 245 | 0.98  | 0.96 |
| 35%                 | 5.5             | 26 | 144 | 1.00  | 0.99 |

**NOTE:** Allow a 5% factor of safety when calculating relief capacity

- Pressure Differential Concerns
  - With lower pressure differentials it is more difficult for regulator to operate at 100% capacity.m

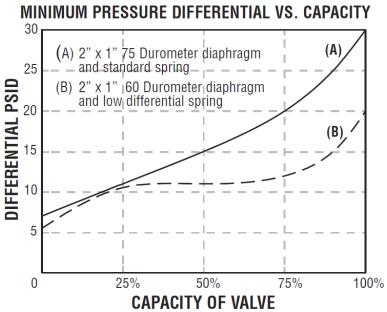



Table 3. Maximum Inlet Pressure, Allowable Pressure Drop, and Minimum Differential Pressures

|                                       | (IMUM<br>WABLE                                    | M/                                                                                                            | AIN VALV                     | /E SPRI                  | NG                     |         | MINIMUM          |                           |                                                                            | махі                              |       |
|---------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|------------------------|---------|------------------|---------------------------|----------------------------------------------------------------------------|-----------------------------------|-------|
| INLET P                               | RESSURE<br>SSURE<br>ROP                           | Part<br>Number                                                                                                | Wire Di                      | ameter                   | Free L                 | ength   | PRESSURE         | ENTIAL<br>FOR FULL<br>OKE | DISK MATERIALS                                                             | ORIFICE<br>SIZE <sup>(1)(5)</sup> |       |
| psig                                  | bar                                               |                                                                                                               | Inches                       | mm                       | Inches                 | mm      | psig             | bar                       |                                                                            | Inches                            | mm    |
| 25                                    | 1.7                                               | 1C277127022                                                                                                   | 0.148                        | 3.76                     | 6                      | 152     | 0.75             | 0.05                      | Nitrile Disk Type Option (NBR) and<br>Fluorocarbon (FKM)                   | 1-1/8                             | 29    |
| 50                                    | 3.4                                               | 1N801927022                                                                                                   | 0.156                        | 3.96                     | 7.13                   | 181     | 1.5              | 0.10                      | Neoprene (CR) and Fluorocarbon (FKM)                                       | 1-1/8                             | 29    |
| 150                                   | 10.3                                              | 1B883327022                                                                                                   | 0.187                        | 4.75                     | 6.63                   | 168     | 3                | 0.21                      | Nitrile O-ring Type Option (NBR),<br>Neoprene (CR), and Fluorocarbon (FKM) | 1-1/8                             | 29    |
| 175(2)                                | 12.1 <sup>(2)</sup>                               | 1B883327022                                                                                                   | 0.187                        | 4.75                     | 6.63                   | 168     | 3                | 0.21                      | Nitrile O-ring Type Option (NBR),<br>Neoprene (CR), and Fluorocarbon (FKM) | 7/8                               | 22    |
| 250                                   | 17.2                                              | 1B883327022                                                                                                   | 0.187                        | 4.75                     | 6.63                   | 168     | 3                | 0.21                      | Neoprene (CR) and Fluorocarbon (FKM)                                       | 7/8                               | 22    |
| 300                                   | 20.7                                              | 0W019127022                                                                                                   | 0.281                        | 7.22                     | 6                      | 152     | 10               | 0.69                      | Nylon (PA)                                                                 | 1-1/8(3)                          | 29(3) |
| 400                                   | 27.6                                              | 0W019127022                                                                                                   | 0.281                        | 7.22                     | 6                      | 152     | 10               | 0.69                      | Nylon (PA) and PTFE                                                        | 7/8                               | 22    |
| 1000                                  | 69.0                                              | 0W019127022                                                                                                   | 0.281                        | 7.22                     | 6                      | 152     | 10               | 0.69                      | Nylon (PA)                                                                 | 1/2(4)                            | 13(4) |
| 2. CL125<br>3. 1-1/8-in<br>4. 1/2-inc | FF flanged bo<br>nch / 29 mm is<br>h / 13 mm is t | zes up to maximum<br>ody only.<br>s the only orifice avail<br>he only orifice avail<br>tion is only available | ailable for 3<br>able for 10 | 300 psig /<br>100 psig / | 20.7 barn<br>69.0 barn | naximum | inlet pressure r |                           |                                                                            |                                   |       |

#### • Sizing Relief Valve

For ReliefValve sizing the capacity of the regulators are,

Capacity = (MAOP + 14.7 psi) \* Cg \* 1.29

Capacity = 264.7 \* 500 \* 1.29 = 170,731.5 CFH = 170.7 MCFH

If a worker monitor set up,

### Capacity = 170.7 \* 0.80 = 136.6 MCFH

Table 5. Orifice Sizes and Flow and Sizing Coefficients

|                                                                          | ORIF                                | CE SIZE                        | FOR RELIEF SIZING |                   |  |
|--------------------------------------------------------------------------|-------------------------------------|--------------------------------|-------------------|-------------------|--|
| TRIM CONSTRUCTION                                                        | INCHES                              | mm                             | WIDE-OPEN Cg      | REGULATING Cg     |  |
| Restricted capacity trim,<br>Straight bore —<br>Elastomer disk seat only | 1/2 <sup>(1)</sup><br>3/4           | 13 <sup>(1)</sup><br>19        | 200<br>425        | 155<br>330        |  |
| Restricted capacity trim,<br>Stepped bore —<br>Elastomer disk seat only  | 7/8 x 3/8<br>7/8 x 1/2<br>7/8 x 5/8 | 22 x 9.5<br>22 x 13<br>22 x 16 | 115<br>200<br>300 | 110<br>190<br>280 |  |
| Full capacity trim,<br>Elastomer disk,<br>or O-ring seats                | 7/8<br>1-1/8                        | 22<br>29                       | 550<br>850        | 408<br>680        |  |

#### FLOW COEFFICIENTS AND CONSTANTS

| 2" x                | Swage<br>Factor |    |     |       |      |
|---------------------|-----------------|----|-----|-------|------|
| Percent<br>Capacity | Cν              | C1 | Cg  | 1.5:1 | 2:1  |
| 100%                | 13.4            | 37 | 500 | 0.96  | 0.93 |
| 75%                 | 10.7            | 30 | 320 | 0.97  | 0.95 |
| 50%                 | 9.1             | 27 | 245 | 0.98  | 0.96 |
| 35%                 | 5.5             | 26 | 144 | 1.00  | 0.99 |

**NOTE:** Allow a 5% factor of safety when calculating relief capacity

### • Sizing Relief Valve

### Capacity of Regulators = 136.6 MCFH

Table 2. Flow Coefficients at Maximum Rated Travels

| BODY   |           | PIPING STYLE               |      |                |                                    |      |                |                |                            |      |                |                                    |      |                |                |
|--------|-----------|----------------------------|------|----------------|------------------------------------|------|----------------|----------------|----------------------------|------|----------------|------------------------------------|------|----------------|----------------|
| BOD    | ' SIZE    | Line Size Equals Body Size |      |                |                                    |      |                |                | 2:1 Line Size to Body Size |      |                |                                    |      |                |                |
| NPS DN | DN        | Linear Cage                |      |                | Whisper Trim <sup>®</sup> III Cage |      |                | IZ.            | Linear Cage                |      |                | Whisper Trim <sup>®</sup> III Cage |      |                |                |
|        | DN        | Cg                         | Cv   | C <sub>1</sub> | Cg                                 | Cv   | C <sub>1</sub> | K <sub>m</sub> | Cg                         | Cv   | С <sub>1</sub> | Cg                                 | Cv   | C <sub>1</sub> | K <sub>m</sub> |
| 1      | 25        | 600                        | 17.2 | 35.7           | 576                                | 17.0 | 33.7           | 0.71           | 568                        | 16.8 | 33.0           | 529                                | 15.5 | 34.0           | 0.71           |
| 2      | 50        | 2280                       | 63.3 | 36.0           | 1970                               | 54.7 | 36.0           | 0.71           | 2050                       | 59.6 | 34.4           | 1830                               | 52.2 | 35.0           | 0.71           |
| 3      | 80        | 4630                       | 132  | 35.1           | 3760                               | 107  | 35.0           | 0.71           | 4410                       | 128  | 34.4           | 3630                               | 106  | 34.2           | 0.71           |
| 4      | 100       | 7320                       | 202  | 36.2           | 6280                               | 180  | 34.8           | 0.71           | 6940                       | 198  | 35.0           | 6020                               | 171  | 35.2           | 0.71           |
| 6      | 150       | 12,900                     | 397  | 32.5           | 9450                               | 295  | 32.0           | 0.71           | 12,100                     | 381  | 31.7           | 9240                               | 291  | 31.7           | 0.71           |
| 8 x 6  | 200 x 150 | 17,800                     | 556  | 32.0           | 10,500                             | 300  | 35.0           | 0.71           | 17,100                     | 534  | 32.0           | 10,270                             | 293  | 35.0           | 0.71           |

Capacity of Relief = (Set point + Buildup + 14.7) \* Cg \* 1.29 Capacity of 2" = (38 + 1.7 + 14.7) \* 2280 \* 1.29 = 124.0 MCFH Capacity of 3" = (38 + 1.6 + 14.7) \* 4630 \* 1.29 = 324.3 MCFH

### • Sizing Relief Valve

Table 5. Type 63EG Relief Capacities<sup>(1)</sup> to atmosphere with Types 6358, 6358B, 6358EB, and 6358EBH Pilots (continued)

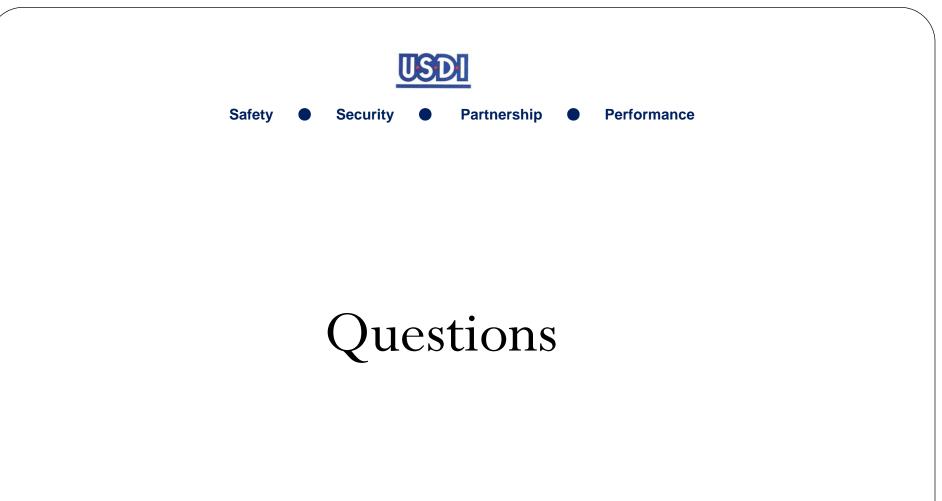
| MAIN<br>VALVE SIZE PILOT<br>TYPE |              | MAIN<br>VALVE<br>SPRING<br>COLOR |                                                      | SET<br>PRESSURE <sup>(2)</sup>                     |                                        | BUILDUP OVER<br>SET PRESSURE<br>NEEDED TO<br>BEGIN OPENING<br>MAIN VALVE <sup>(3)</sup> |                                              | BUILDUP<br>OVER SET<br>PRESSURE<br>NEEDED TO<br>FULLY OPEN<br>MAIN VALVE <sup>(4)</sup> |                                              | PRESSURE<br>DROP BELOW<br>SET PRESSURE<br>NEEDED TO<br>RESEAT PILOT |      | CAPACITIES <sup>(1)</sup> OF<br>0.6 SPECIFIC<br>GRAVITY NATURAL<br>GAS WITH 2:1<br>LINE SIZE TO<br>BODY SIZE PIPING |                                                        |                                      |                                          |                                  |
|----------------------------------|--------------|----------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------|
| NPS                              | DN           |                                  |                                                      | Psig bar                                           | Psig                                   | bar                                                                                     | Psig                                         | bar                                                                                     | Psig                                         | bar                                                                 | Psig | bar                                                                                                                 | SCFH                                                   | Nm <sup>3</sup> /h                   |                                          |                                  |
|                                  |              |                                  | Yellow                                               | 10 to 40<br>/ 0,69 to 2,8<br>1E392527022<br>Yellow | 10<br>15<br>20<br>30                   | 0,69<br>1,0<br>1,4<br>2,1                                                               | 3.5<br>1.3<br>1.2<br>1.2                     | 0,24<br>0,09<br>0,08<br>0,08                                                            | 9.0<br>4.0<br>2.0<br>1.5                     | 0,62<br>0,28<br>0,14<br>0,10                                        |      |                                                                                                                     | 185 000<br>185 000<br>203 000<br>260 000               | 4958<br>4958<br>5440<br>6968         |                                          |                                  |
|                                  |              | 6358<br>Green                    | 35 to 125 psig<br>/ 2,4 to 8,6<br>1K748527202<br>Red | 40<br>50<br>60<br>80<br>100<br>125                 | 2,8<br>3,4<br>4,1<br>5,5<br>6,9<br>8,6 | 2.0<br>2.0<br>2.0<br>2.0<br>2.4<br>2.4                                                  | 0,14<br>0,14<br>0,14<br>0,14<br>0,17<br>0,17 | 2.5<br>2.5<br>2.5<br>2.5<br>3.0<br>3.0                                                  | 0,17<br>0,17<br>0,17<br>0,17<br>0,21<br>0,21 | 5.0                                                                 | 0,34 | 324 000<br>382 000<br>439 000<br>555 000<br>670 000<br>812 000                                                      | 8683<br>10 238<br>11 765<br>14 874<br>17 956<br>21 762 |                                      |                                          |                                  |
|                                  |              |                                  | Yellow                                               | 10 to 30<br>/ 0,69 to 2,1<br>1B788327022<br>Silver | 10<br>15<br>20<br>30                   | 0,69<br>1,0<br>1,4<br>2,1                                                               | 3.5<br>1.3<br>1.2<br>1.2                     | 0,24<br>0,09<br>0,08<br>0,08                                                            | 9.0<br>4.0<br>2.0<br>1.5                     | 0,62<br>0,28<br>0,14<br>0,10                                        |      |                                                                                                                     | 185 000<br>185 000<br>203 000<br>260 000               | 4958<br>4958<br>5440<br>6968         |                                          |                                  |
|                                  | 6354<br>3 80 | 6358B                            | 6358B                                                | 6358B                                              | Groop                                  | 30 to 60<br>/ 2,1 to 4,1<br>1B788427022<br>Blue                                         | 30<br>40<br>50<br>60                         | 2,1<br>2,8<br>3,4<br>4,1                                                                | 1.6                                          | 0,11                                                                | 2.0  | 0,14                                                                                                                | 1.0                                                    | 0,07                                 | 263 000<br>322 000<br>379 000<br>436 000 | 7048<br>8630<br>10 157<br>11 685 |
| 3                                |              |                                  | Green                                                | 60 to 125<br>/ 4,1 to 8,6<br>1K748527202<br>Red    | 60<br>80<br>100<br>125                 | 4,1<br>5,5<br>6,9<br>8,6                                                                | 2.0<br>2.0<br>2.4<br>2.4                     | 0,14<br>0,14<br>0,17<br>0,17                                                            | 2.5<br>2.5<br>3.0<br>3.0                     | 0,17<br>0,17<br>0,21<br>0,21                                        |      |                                                                                                                     | 439 000<br>553 000<br>670 000<br>812 000               | 11 765<br>14 820<br>17 956<br>21 762 |                                          |                                  |

### **Issues** Noticed

- Valves on control lines
- Ability to perform a lock up test.



### **Issues Noticed**


#### • Adequate protection of the station.

• Bollards



• Buildings



